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Abstract. Using the two-point conductivity formula, we numerically evaluate the giant magnetoresistance
(GMR) in magnetic superlattices with currents in the plane of the layers (CIP), from which the effect of the
interfacial roughness and magnetization configuration on the GMR is studied. With increasing interfacial
roughness, the maximal GMR ratio is found to first increase and then decrease, exhibiting a peak at an
optimum strength of interfacial roughness. For systems composed of relatively thick layers, the GMR is
approximately proportional to cos2 θ, where 2θ is the angle between the magnetizations in two successive
ferromagnetic layers, but noticeable departures from this dependence are found when the layers become
sufficiently thin.

PACS. 75.70.Pa Giant magnetoresistance – 75.70.-i Magnetic films and multilayers – 72.10.Bg General
formulation of transport theory – 72.15.Gd Galvanomagnetic and other magnetotransport effects

Giant magnetoresistance (GMR) observed in magnetic
multilayers with antiferromagnetic coupling between suc-
cessive ferromagnetic (FM) layers [1] has attracted consid-
erable theoretical and experimental interest because of its
potential applications. The resistivity of such a magnetic
layered structure can drop tens percent when an applied
magnetic field is used to overcome the antiferromagnetic
coupling, leaving the structure in a state where the mag-
netic moments of all the FM layers are aligned. It is widely
accepted that this novel transport phenomenon arises
from the spin-asymmetric scattering at the interfaces be-
tween the ferromagnetic (FM) and nonmagnetic (NM) lay-
ers and in the bulk of the FM layers. Although there still
exists controversy whether the spin-dependent bulk scat-
tering or interfacial scattering dominates the GMR be-
havior, the importance of the spin-dependent interfacial
scattering to the GMR has been stressed in both exper-
imental [2–4] and theoretical [5–7] works. There are two
important factors of the interfacial scattering: its strength
and its spin dependence. That scattering at the interfaces
is stronger than in the bulk of the layers is generally ac-
knowledged, because there is a rapid change in the elec-
tronic structure in the interfacial regions. Recently, it has
been shown [8] that correlation in the scattering from pairs
of interdiffusive atoms at the interfaces may lead to con-
structive interference between scattering amplitudes, and
hence enhance the spin dependence of the scattering at
the interfaces. It is therefore of extensive interest to carry
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out detailed study on the effects of the enhanced spin-
dependent interfacial scattering on the GMR.

On the experimental side, the strength of the inter-
facial scattering can be adjusted by varying interfacial
roughness. Fullerton et al. [2] varied the interfacial rough-
ness of sputtered Fe/Cr superlattices by three indepen-
dent methods; changing sputtering gas pressure, varying
sputtering power and increasing the total thickness of the
superlattice. They reported that the GMR was substan-
tially enhanced by increasing the interfacial roughness.
However, the opposite result was found as well that in-
creased interfacial roughness decreases the GMR [3,4]. In
the experiment of Parkin [3], the interfacial roughness was
increased by annealing the sample at elevated tempera-
tures, which causes increased dissolution of the FM/NM
interlayers, and a decreased GMR was found. Thomson,
Riedi and Greig [4] showed that the Co/Cu (111) mul-
tilayers grown by MBE had an increase in GMR as the
interfaces became more abrupt on an atomic scale. These
experiments look to have given contradictory results, so
that a reasonable theoretical explanation of them is highly
desirable.

In this work, the GMR in magnetic superlattices is
calculated by using the real space two-point conductiv-
ity formula [9,10]. The present investigation is confined
to the systems where the spin dependence of the scat-
tering at the interfaces is stronger than that in the bulk
of FM layers. We will focus our attention on two as-
pects. One is the strength effect of interfacial scattering on
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the GMR. It is found that, if the enhanced scatter-
ing asymmetry at interfaces is fixed, with increasing the
strength of the interfacial scattering, the GMR amplitude
first increases and then decreases, exhibiting a novel max-
imum. This theoretical result can be used to reconcile
the superficially contradictory experimental observations
mentioned above [2–4]. The other interest is the depen-
dence of the GMR on the angle θ between the magne-
tizations in two successive FM layers. The GMR ampli-
tude is found to obey an approximately linear dependence
on cos2 θ provided that the layer thicknesses are not very
small. In the thin layer case, deviations from this depen-
dence will grow larger with decreasing the layer thickness.

Let us consider a FM/NM superlattice in which the
NM layers of thickness a and the FM layers of thickness
b are alternately stacked along the z axis. The electrical
transport with currents in the plane of the layers can be
described by the two-point conductivity formula [9,10]

J(z) =

∫ ∞
−∞

dz′σ‖(z, z
′)E(z′), (1)

where

σ‖(z, z
′) =

3CD

4

∫ 1

0

du
1− u2

u
Tr
[
Ŝ(z, z′)Ŝ†(z, z′)

]
. (2)

Here, CD = nee
2/2m with ne as the electron density, and

Ŝ(z, z′) = Pz′→z exp[−
∫ z>
z<

dz′′λ̂−1(z′′)/2u], where λ̂(z) is
the 2 × 2 mean free path matrix in spin space, z< (z>)
is the smaller (larger) one of z and z′, and the path or-
dering operator Pz′→z reorders the noncommutating 2×2
scattering matrices λ̂−1(z′′) from z to z′ and from right to
left. This conductivity formula can be derived either from
the real-space Kubo formula under the quasiclassical ap-
proximation [9] or directly from the Boltzmann equation
approach [10]. It is worthy to be mentioned that equa-
tion (2) is applicable not only to a collinear magnetization
configuration, but also to arbitrary magnetization config-
urations. So, it can be used to study the magnetization
dependence of the GMR. For the transport parallel to the
plane of the layers, since E(z) ≡ E is a constant indepen-
dent of z, we can obtain from equation (1) for the average
conductivity

σ =
1

L

∫ L

0

dz

∫ ∞
−∞

dz′σ‖(z, z
′), (3)

where L stands for the minimum period of the spatial
distribution of the current density.

We now specify the input parameters which will be
used in our calculations. The mean free path matrix in
equation (2) is given by [10]

λ̂−1(z) =
1

2

(
1

λ↑(z)
+

1

λ↓(z)

)
+

1

2

(
1

λ↓(z)
−

1

λ↑(z)

)
σ̂ ·m(z), (4)

where λ↑(z) and λ↓(z) are the position-dependent mean
free paths for spin-up and spin-down electrons, respec-
tively, σ̂ is the Pauli spin vector operator and m(z) is
a unit vector along the direction of the local magneti-

zation. In the FM layers, we denote λ↑(z) = λ↑FM and

λ↓(z) = λ↓FM with bulk scattering asymmetry defined as

NFM = λ↑FM/λ
↓
FM; while in the NM layers, the scattering is

spin-independent so that we have λ↑(z) = λ↓(z) = λNM.
Furthermore, the interfacial scattering is modeled as the
bulk scattering in a thin region where the FM and NM
atoms are mixed. In such a mixing layer, we denote
λ↑(z) = λ↑I and λ↓(z) = λ↓I with interfacial scattering

asymmetry NI = λ↑I /λ
↓
I . The thickness d of the mixing

layer is assumed to be much smaller than a and b. In this
case, only the ratio between d and the mean free path in
the mixing layer is relevant to physical results, so that a

dimensionless parameter γI = d/λ↑I can be introduced to
characterize the strength of the interfacial scattering. As a
result, the independent input parameters for the problem
are

(1) a, λNM, for NM layers;

(2) b, λ↑FM, NFM, for FM layers;
(3) γI, NI, for interfaces.

Since we have assumed that the mean free paths are z
independent within each layers, the integral over z and
z′ in equation (3) is readily performed and the average
conductivity is obtained as

σ =
3CD
2L

∫ 1

0

du(1−u2)
∑

n=1,2···

Tr

[
dnλ̂n−u(1−Ên)λ̂2

n

+2u(1−Ên)λ̂n
∑
m(>n)

Ŝnm(1−Êm)λ̂mŜ
†
nm

]
, (5)

where dn and λ̂n represent the thickness and mean
free path matrix in the nth layer, respectively, Ên =
exp(−dnλ̂−1

n /u), and Ŝnm = Ŝ(z, z′) with z (z′) at the
right (left) surface of the nth (mth) layer. The summation
over n in equation (5) is confined in a single period L. The
matrix multiplication will be numerically evaluated.

Role of interfacial scattering

In Figure 1, the maximal GMR ratio ∆σ/σFM is plotted as
a function of the interfacial scattering strength γI for dif-
ferent values of layer thicknesses and interfacial scattering
asymmetry NI. Here, ∆σ = σFM−σAF, where σFM and σAF

are the spatial averages of the conductivity in the FM and
antiferromagnetic configurations, respectively. It is found
that increased spin dependence of interfacial scattering
always leads to an enhancement of the GMR ratio. The
GMR increase is relatively larger in the multilayer with
thinner layers, where the interfacial scattering occupies a
greater weight in producing the GMR. What is more im-
portant, we find that all the ∆σ/σFM vs. γI curves, with
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Fig. 1. Maximal GMR ratio ∆σ/σFM as a function of interfa-
cial scattering strength γI for several values of layer thicknesses
and interfacial scattering asymmetry as labeled in the figure.
The other parameters used are NFM = 10 and λNM = λ↑FM =
200 Å.

enhanced interfacial scattering asymmetry (NI > NFM),
exhibit novel peak behavior. As γI is increased, the GMR
first increases and then decreases, strongly suggesting that
there exists an optimum value of γI at which there is a
maximal GMR amplitude. For the a = 30 Å and b = 10 Å
sample, we also show the conductivity values σFM and σAF

in Figure 2. It is interesting to notice that both σFM and
σAF change monotonously with changing the interfacial
scattering strength. Therefore, the GMR peak discussed
above originates from the nonmonotonous variation of∆σ.
In the present calculation, the spin asymmetric factorNFM

is taken to be NFM = 10, which is close to the value 11.8
obtained in the quantum GMR theory [7] by fitting the ex-
perimental data for Fe/Cr superlattices. For other systems
the parameter may be different. For example for Co/Ag
multilayers, Pratt et al. and Schroeder et al. [11] found
NFM ' 3 based on a resistor network analysis within a
two fluids model, being much smaller than that for the
Fe/Cr superlattices. Nevertheless, our results in particu-
lar the peak behavior of the GMR will not change quali-
tatively with changing the values of the input parameters,
as long as the enhanced spin asymmetry of the interfacial
scattering is taken into account.

The peak behavior of the GMR can be understood as
a result of the competition between the following two fac-
tors. On the one hand, an enhancement of interfacial scat-
tering strength will increase the proportion of the interfa-
cial scattering to the total scattering. Since the scattering
asymmetry at the interface is greater than that in the
bulk of the layers, enhanced interfacial scattering should
increase the GMR effect. On the other hand, as the inter-
facial scattering is increased strong enough, its further in-
crease may prevent conduction carriers from moving from
one FM layer to the others and so the electronic transport
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Fig. 2. Conductivity for ferromagnetic configuration σFM and
antiferromagnetic configuration σAF as a function of interfacial
scattering strength γI. Here, a = 30A, b = 10A and other
parameters are taken as the same as in Figure 1.

parallel to the plane of the layers become insensitive to the
change in the magnetization configuration of the FM lay-
ers, which is unfavorable to the GMR effect. In the limiting
case where the interfacial scattering is completely diffusive
for both spin channels, the interfaces can be regarded as
thin isolator films, and each layer contributes to the con-
ductivity independently so that the GMR effect vanishes.
Such a competition between the two opposite effects can
produce the peak behavior of the GMR ratio. It is inter-
esting to see that for the set of curves with the smallest
ratio b/a (a = 30 Å and b = 10 Å) in Figure 1, the peak
behavior persists even for the case NI = NFM = 10. This
is because with decreasing b/a, the spin-dependent pro-
portion of the bulk scattering decreases and so the spin-
dependent interfacial scattering plays more important role
in the GMR effect.

The present theoretical result can account qualita-
tively for the inconsistent experimental data [2–4] by link-
ing γI with interfacial roughness. Taking into account that
there exists an optimal value of interfacial roughness, we
may argue that the experimental result that increased in-
terfacial roughness enhances the GMR [2] is obtained in
the multilayers whose interfacial roughness is below its op-
timal value, while the opposite experimental result [3,4]
may be observed for the interfacial roughness above the
optimum value. Besides, the interfacial roughness may af-
fect the interfacial scattering asymmetry, this effect de-
pending mainly on what types of atoms are mixed at the
interfaces. As an example, for the Fe/Cr multilayer in-
creased mixing of Fe and Cr atoms at the Fe/Cr interfaces
will increase both the interfacial scattering strength and
spin asymmetry, which is another reason for that its GMR
can be enhanced by increased interfacial roughness [2].
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Fig. 3. GMR amplitude ∆σ(M)/σ(M) as a function of
(M/Ms)

2. The interfacial scattering strength is taken to be
γI = 0.01. The other parameters are NFM = 10 and λNM =
λ↑FM = 200A. Triangles represent the best fits of equa-
tion (6) to the magnetization-dependent GMR calculated from
equation (5).

Angle dependence of GMR

For simplicity, we consider that a magnetic multilayer
has the canted magnetization configuration in the pres-
ence of an external magnetic field that is smaller than
the saturation one, in which the magnetization direction
of the nth FM layer may be characterized as the polar
angles [θ, φn] with φn = 0 and π for n being odd and
even, respectively. It is easy to see that 2θ corresponds
to the angle between the magnetizations in two succes-
sive magnetic layers. For this particular magnetic con-
figuration, the global magnetization M of the system is
given by M = Ms cos θ, where Ms is the saturation mag-
netization of the system in the presence of a saturation
magnetic field. Therefore the angle dependence is actu-
ally equivalent to a magnetization dependence. In gen-
eral, the magnetization dependent GMR can be defined
as ∆σ(M)/σ(M) with ∆σ(M) = σ(M) − σ(0). In Fig-
ure 3, we plot the calculated GMR ratio as a function
of (M/Ms)

2 = cos2 θ for different values of layer thick-
nesses and interfacial scattering asymmetry. For the sys-
tem with relatively thick layers (a = b = 60 Å), the
GMR ratio obeys an approximate linear dependence on
(M/Ms)

2. With decreasing the layer thickness, small de-
partures from this dependence can be seen. In this case,
the calculated GMR amplitude ∆σ(M)/σ(M) is found to
be a relatively complicated even function of M/Ms, which
can be expressed as

∆σ(M)

σ(M)
= C

[(
M

Ms

)2

+ α

(
M

Ms

)4
]
. (6)

With adjusted parameters C and α (< 0.5), its best fits
to the calculated results (solid and dashed lines) are given
by triangles in Figure 3.

The magnetization dependence of the GMR ratio has
been studied experimentally in several magnetic layered
structures [12–14], and it has been found that the GMR
ratio varies approximately as (M/Ms)

2. On the theoreti-
cal side, Vedyayev et al. [15] and Barnaś et al. [16] have
studied angular dependence of the GMR in FM bilayers
and FM/NM/FM sandwiches. They showed the linear de-
pendence of GMR on (M/Ms)

2 when there is no potential
step at interfaces. They also suggested that in the presence
of potential steps at the interfaces, significant deviations
from the linear behavior can be found. For magnetic su-
perlattices, we have previously reproduced this linear de-
pendence analytically from the Boltzmann equation ap-
proach in two limiting cases [10]. One is the thick layer
limit, where the thickness of the FM layer is larger than
the mean free paths b > λs

FM, the other is the homoge-
neous limit of dn � λs

n. The latter limit may not be easily
realized experimentally, for there exists relatively strong
interfacial scattering in real systems. The present numer-
ical result shows that, between the two limiting cases,
there are obvious deviations from the linear dependence
on (M/Ms)

2. Such deviations from the linear behavior in
magnetic superlattices seem intrinsic, since their presence
does not depend on whether the potential steps at inter-
faces are taken into account. They occur whenever the
electrons can propagate through three or more magnetic
layers within an average mean free path. The magnetiza-
tion dependence of the GMR given in equation (6) has
been observed in magnetic granular systems [17]. It is ex-
pected that the predicted deviations from the linear de-
pendence on (M/Ms)

2 can be observed in future experi-
ments of magnetic superlattices composed of sufficiently
thin layers.

In summary, we have numerically studied the effects of
the interfacial roughness on the GMR and the magneti-
zation dependence of the GMR. The enhanced scattering
asymmetry at the interfaces as predicted in reference [8]
has been taken into account in the present theory. It is
found that there exists an optimum degree of interfacial
roughness at which the GMR ratio exhibits its maximum.
This theoretical result can be used to settle a dispute in
experimental reports. In magnetic superlattices with rela-
tively thick layers, the GMR amplitude obeys an approx-
imate linear dependence on (M/Ms)

2, but obvious devia-
tions from this linear dependence appear in systems with
sufficiently thin layers.
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